624 research outputs found

    Dynamic Vehicle Routing for Data Gathering in Wireless Networks

    Full text link
    We consider a dynamic vehicle routing problem in wireless networks where messages arriving randomly in time and space are collected by a mobile receiver (vehicle or a collector). The collector is responsible for receiving these messages via wireless communication by dynamically adjusting its position in the network. Our goal is to utilize a combination of wireless transmission and controlled mobility to improve the delay performance in such networks. We show that the necessary and sufficient condition for the stability of such a system (in the bounded average number of messages sense) is given by {\rho}<1 where {\rho} is the average system load. We derive fundamental lower bounds for the delay in the system and develop policies that are stable for all loads {\rho}<1 and that have asymptotically optimal delay scaling. Furthermore, we extend our analysis to the case of multiple collectors in the network. We show that the combination of mobility and wireless transmission results in a delay scaling of {\Theta}(1/(1- {\rho})) with the system load {\rho} that is a factor of {\Theta}(1/(1- {\rho})) smaller than the delay scaling in the corresponding system where the collector visits each message location.Comment: 19 pages, 7 figure

    Dynamic Server Allocation over Time Varying Channels with Switchover Delay

    Get PDF
    We consider a dynamic server allocation problem over parallel queues with randomly varying connectivity and server switchover delay between the queues. At each time slot the server decides either to stay with the current queue or switch to another queue based on the current connectivity and the queue length information. Switchover delay occurs in many telecommunications applications and is a new modeling component of this problem that has not been previously addressed. We show that the simultaneous presence of randomly varying connectivity and switchover delay changes the system stability region and the structure of optimal policies. In the first part of the paper, we consider a system of two parallel queues, and develop a novel approach to explicitly characterize the stability region of the system using state-action frequencies which are stationary solutions to a Markov Decision Process (MDP) formulation. We then develop a frame-based dynamic control (FBDC) policy, based on the state-action frequencies, and show that it is throughput-optimal asymptotically in the frame length. The FBDC policy is applicable to a broad class of network control systems and provides a new framework for developing throughput-optimal network control policies using state-action frequencies. Furthermore, we develop simple Myopic policies that provably achieve more than 90% of the stability region. In the second part of the paper, we extend our results to systems with an arbitrary but finite number of queues.Comment: 38 Pages, 18 figures. arXiv admin note: substantial text overlap with arXiv:1008.234

    Probing the neutral edge modes in transport across a point contact via thermal effects in the Read-Rezayi non-abelian quantum Hall states

    Full text link
    Non-abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasi-particle excitations obeying non-abelian statistics. In general, it is hard to probe the neutral modes in charge transport measurements and a thermal transport measurement seems to be inevitable. Here we propose a setup which can get around this problem by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a non-trivial signature of the presence of the neutral mode hence leading to its indirect detection. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials

    Dynamic stability of crack fronts: Out-of-plane corrugations

    Full text link
    The dynamics and stability of brittle cracks are not yet fully understood. Here we use the Willis-Movchan 3D linear perturbation formalism [J. Mech. Phys. Solids {\bf 45}, 591 (1997)] to study the out-of-plane stability of planar crack fronts in the framework of linear elastic fracture mechanics. We discuss a minimal scenario in which linearly unstable crack front corrugations might emerge above a critical front propagation speed. We calculate this speed as a function of Poisson's ratio and show that corrugations propagate along the crack front at nearly the Rayleigh wave-speed. Finally, we hypothesize about a possible relation between such corrugations and the long-standing problem of crack branching.Comment: 5 pages, 2 figures + supplementary informatio

    Dynamical Inequality in Growth Models

    Full text link
    A recent exponent inequality is applied to a number of dynamical growth models. Many of the known exponents for models such as the Kardar-Parisi-Zhang (KPZ) equation are shown to be consistent with the inequality. In some cases, such as the Molecular Beam Equation, the situation is more interesting, where the exponents saturate the inequality. As the acid test for the relative strength of four popular approximation schemes we apply the inequality to the exponents obtained for two Non Local KPZ systems. We find that all methods but one, the Self Consistent Expansion, violate the inequality in some regions of parameter space. To further demonstrate the usefulness of the inequality, we apply it to a specific model, which belongs to a family of models in which the inequality becomes an equality. We thus show that the inequality can easily yield results, which otherwise have to rely either on approximations or general beliefs.Comment: 6 pages, 4 figure

    Anisotropy and periodicity in the density distribution of electrons in a quantum-well

    Full text link
    We use low temperature near-field optical spectroscopy to image the electron density distribution in the plane of a high mobility GaAs quantum well. We find that the electrons are not randomly distributed in the plane, but rather form narrow stripes (width smaller than 150 nm) of higher electron density. The stripes are oriented along the [1-10 ] crystal direction, and are arranged in a quasi-periodic structure. We show that elongated structural mounds, which are intrinsic to molecular beam epitaxy, are responsible for the creation of this electron density texture.Comment: 10 pages, 3 figure

    Void Formation and Roughening in Slow Fracture

    Full text link
    Slow crack propagation in ductile, and in certain brittle materials, appears to take place via the nucleation of voids ahead of the crack tip due to plastic yields, followed by the coalescence of these voids. Post mortem analysis of the resulting fracture surfaces of ductile and brittle materials on the μ\mum-mm and the nm scales respectively, reveals self-affine cracks with anomalous scaling exponent ζ0.8\zeta\approx 0.8 in 3-dimensions and ζ0.65\zeta\approx 0.65 in 2-dimensions. In this paper we present an analytic theory based on the method of iterated conformal maps aimed at modelling the void formation and the fracture growth, culminating in estimates of the roughening exponents in 2-dimensions. In the simplest realization of the model we allow one void ahead of the crack, and address the robustness of the roughening exponent. Next we develop the theory further, to include two voids ahead of the crack. This development necessitates generalizing the method of iterated conformal maps to include doubly connected regions (maps from the annulus rather than the unit circle). While mathematically and numerically feasible, we find that the employment of the stress field as computed from elasticity theory becomes questionable when more than one void is explicitly inserted into the material. Thus further progress in this line of research calls for improved treatment of the plastic dynamics.Comment: 15 pages, 20 figure
    corecore